On June 08, 2018 the master thesis defence of the second cohort of the EACH programme took place at Uppsala University! Thi Duong Bui, Anton Roshchin, Duc Khanh Tho Nguyen, Ruixin Huang, Alisija Prakapaitė, Kalliroi Sdougkou, Ajit Jung Karki and Snežana Đorđević successfully defended their master’s theses.

The topics of the theses embraced a wide area of modern biomed- and environmental analytical problems (MS imaging in biomedical research, LC-MS analysis of drugs in different matrices, evaluation of molecular markers for determination of efficiency in drinking water treatment processes, studies of photosynthesis, etc). All of them featured the use of highly sophisticated analytical instrumentation, such as high-resolution MS, imaging systems, etc. This choice of topics is largely directed by the world-famous biomedical analysis research direction at Uppsala University led by prof. Jonas Bergquist.

The average quality level of the theses was found to be very high by the defence committee members.

Congratulations to all of you!

(On photo from the left: Tho, Kalliroi, Alisija, Snežana, Ivo, Jonas, Duong, Ajit, Anton, Ruixin)

 

A comprehensive comparative validation for two different types of dissolved oxygen (DO) analyzers, amperometric and optical, together with estimation of measurement uncertainty is presented in the recently published article I. Helm, G. Karina, L. Jalukse, T. Pagano, I. Leito, Environmental Monitoring and Assessment 2018, 190, 313.

A number of performance characteristics were evaluated including drift, intermediate precision, accuracy of temperature compensation, accuracy of reading (under different measurement conditions), linearity, flow dependence of the reading, repeatability (reading stability), and matrix effects of dissolved salts. The matrix effects on readings in real samples were evaluated by analyzing the dependence of the reading on salt concentration (at saturation concentration of DO). The analyzers were also assessed in DO measurements of a number of natural waters. The uncertainty contributions of the main influencing parameters were estimated under different experimental conditions. It was found that the uncertainties of results for both analyzers are quite similar but the contributions of the uncertainty sources are different.

The results imply that the optical analyzer might not be as robust as is commonly assumed, however, it has better reading stability, lower stirring speed dependence, and typically requires less maintenance. On the other hand, the amperometric analyzer has a faster response and wider linear range.

(Photo by Lauri Jalukse: measurements of dissolved oxygen concentration with amperometric and optical analyzers at Jordan spring, Karksi-Nuia, Estonia)

 

University of TartuIn a recent ranking of universities in the “New Europe” – the 13 countries that have become EU members since 2004 – carried out by the Times higher Education, the University of Tartu was ranked as No 1!

University of Tartu is followed by the Cyprus University of Technology and University of Cyprus. The Charles University in Prague is ranked fourth.

The list includes 53 universities in total and uses the conventional methodology of THE World University Rankings.

 

Measurement_Uncertainty_MOOC_Successfully_FinishedOn May 14, 2018 the on-line course (MOOC) Estimation of measurement uncertainty in chemical analysis offered by University of Tartu finished successfully.
Eventually altogether 521 people registered (270 in 2014, 489 in 2015, 757 in 2016, 363 in 2017) from 76 countries (a number of participants joined after the start of the course). 358 participants actually started the course (i.e. tried at least one graded test at least once) and out of them 218 successfully completed the course (141 in 2014, 169 in 2015, 308 in 2016, 148 in 2017). The overall completion rate was 42% (52% in 2014, 34% in 2015, 40% in 2016, 41% in 2017). The completion rate of participants who started the studies was 61% (67% in 2014, 60% in 2015, 67% in 2016, 68% in 2017). The completion rates are nicely consistent over the last years and can be considered very good for a MOOC, especially one that has quite difficult calculation exercises, which need to be done correctly for completing the course.

The participants were very active and asked lots of questions. The questions were often very much to the point and addressed things that are really important to analysts in their everyday work. The course has several forums (general and by topic) and the overall number of posts to them during the course period reached almost 300 (!) (overall number of posts, both from participants and from teachers) and the forums are still active and posts are still coming in.

This active participation made teaching of this MOOC a great experience also for us, the teachers. The discussion threads gave a lot of added value to the course and some of them triggered making important modifications to the course materials, even during the course.

We want to thank all participants for helping to make this course a success!

We plan to repeat this course again in Spring 2019.

 

Dr_Thompson lecturingDuring Apr 4-8, 2018 The EACH programme had the pleasure of hosting visiting scholar, Dr. David F. Thompson from the Keele University (UK). He conducted an intensive course Introduction to Forensic Analysis.

This lecture series started with some basic forensic principles that underpin the use of analytical chemistry in the court room. It then developed to cover key biological samples that can be encountered in a forensic investigation along with their specific uses and pre-cautions that need to be taken during collection, storage, analysis and reporting of these sample types. A significant amount of time was devoted to understanding the ethical considerations around forensic analysis and how other regulation can affect an investigation. The final part of this series focused on some future directions in food fraud detection using metabonomic profiling.

Dr_Thompson_examining_fingerprints_with_studentsAn exciting part was a practical session on the analysis of fingerprints. Dr Thompson first explained the basics of fingerprint analysis, the classification of the patterns and the different levels of detail. He also had fingerprint swabs and fingerprint forms with him. Every student had the possibility to take his/her fingerprints and analyse them for the typical patterns.

Group photo of the Introduction to Forensic Analysis course (EACH)Altogether 27 students (out of them 15 EACH students) participated in the course and their feedback was very positive.

Dr. Thompson is the Forensic Science Programme Director at Keele and the module leader for the Forensic Toxicology, Drugs of Abuse and the final year project elements of the course. He also directs a research group that is focused on food fraud research using metabonomics.

(Photo up left: Dr. Thompson teaching the class; Photo on the right: Dr. Thompson examining fingerprints with students; Photo down left: Group photo with the participants)

 

U_MOOC_Countries_of_Participants_2018On Tuesday, March 27, 2018 the web course Estimation of Measurement Uncertainty in Chemical Analysis was launched the fifth time as a MOOC (Massive Online Open Course)!

Currently more than 450 participants from 70 countries are registered! As was the case in the previous years, the majority of participants are from analytical laboratories. This once again demonstrates the continuing need for training in measurement uncertainty estimation for practicing analytical chemists.

The full course material is accessible from the web page https://sisu.ut.ee/measurement/uncertainty. As is usual, some developments and improvements have been made to the course material. in particular, the description of course organisatsion was improved; more explanations and examples were added on random and systematic effects within short and long term; the typical requirements for determining repeatability and within-lab reproducibility have been clearly outlined; more explanations on the main principles of modifying a model in a modelling approach have been given, together with an example. Some changes are still in the pipeline.

The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises). In order to pass the course the registered participants have to pass six graded tests and get higher than 50% score from each of tehm. These tests are available to registered participants via the Moodle e-learning platform.

 

LCMS Method Validation online course offered by UTOn Feb 16, 2018 the on-line course (MOOC) LC-MS Method Validation finished successfully.

Altogether 424 (303 last year) people were registered from 71 (61 last year) countries. 236 (224 last year) participants actually started the course (i.e. tried at least one graded test at least once) and out of them 159 (168 last year) successfully completed the course. The overall completion rate was 37% (55% last year). The completion rate of participants who actually started the studies was 67% (75% last year). As can be seen, almost all these statistics are worse than they were the year ago. But then in the last year’s edition both completion rates were all time highest that our group has seen in any of our MOOCs. Thus we probably can be reasonably happy with the completion rates that we have now.

As has been the usual case with our online courses, the questions from the participants were often very interesting, often addressed things that are really important to analysts in their everyday work and in several cases led to improvements in the course. This active participation made teaching this course a great experience also for us, the teachers! The discussion threads gave a lot of added value to the course and some of them triggered making important modifications to the course materials.

We want to thank all participants for helping to make this course a success!

We plan to repeat this course again in Autumn 2018.

 

It was the spring of 2011 when I decided to apply to the AMS programme. If I remember correctly, the decision was based on my gut feeling and it was a right one. AMS was related to “perceived” world more than many other programmes in the faculty of science and technology as was also stated in the slogan “bridging the gap between measurements and society”.

5 years after the graduation I am still thankful for taking the journey, and I wanted to remind to myself and to others the three aspects that distinguished the programme from many others.

1) Combination of science and society. If you have the opportunity to combine your own favourite scientific topic (in my case biochemistry and measurement science) with knowledge about requirements related to law, regulations, and standards one has the possibility to give your thoughts a new perspective. It was beneficial for me in the labour market – there are not many people who know both of these aspects simultaneously which makes an AMS graduate a valuable specialist, mostly in private sector, but also in “pure” science. (I am currently working as a quality assurance specialist at Kevelt AS, which is a pharmaceutical manufacturing company in Estonia.)

2) Improvement of communication skills. There was a lot of group work during the studies, which improved my social skills. There is nothing more important than human relations! We had the possibility to study with people from Uzbekistan, Latvia, China, United Kingdom, Ukraine, Jordan, Romania, France, Turkey, and many more. This enabled to study about other cultures, but also how to communicate with people from other cultures.

3) The inspiring (!) lecturers. Their eyes were sparkling when they spoke about their topics so vividly. I believe that people are best at what they really love to do and I aim for the same in my professional career.

I could not thank Prof. Ivo Leito more for such an important contribution to our (students´) lives as leading the AMS programme. He is passionate about what he is teaching and sincerely interested in answering the endless questions, giving us the opportunity to find our better selves in the progress of studies.

 

The_Winning_C_Team_and_the_Baby_Boss_InstrumentThe winner of the student team work of the EACH Winter school 2018 is team C – Snežana Đorđević, Kenneth Arandia, Lydia Man, Mohan Ghorasaini!

They built an instrument for controlling Baby food temperature – the Boss Baby Bottle Sensor. The instrument senses the temperature of a baby food container and indicates with LED lamps whether the temperature is too low, suitable or too high. In the latter case the system runs a fan for cooling the food. Nice instrument and nice presentation!

Baby_Boss_Instrument_in_Operation

 

Photos (Ivo Leito): Up: Kenneth, Lydia, Snežana and Mohan with the instrument and the prize (sweets). Right: Baby Boss Bottle Sensor in operation – cooling a too hot drink.

 

Turbidimeter lab at EACH Winter School 2018

Turbidimeter lab at EACH Winter School 2018

Possibly the most exciting activity at the EACH Winter School 2018 is the teamwork aiming at building some simple instrumentsusing the Arduino Integrated Development Environment (https://www.arduino.cc, see also https://en.wikipedia.org/wiki/Arduino).

The instruments built were thermometer, light intensity meter and turbidimeter (!). All are small and simple, but highly useful devices. The Arduino motherboard is programmed and the obtained data are managed using laptops and a dedicated software. So, instruments can be built at very low cost and virtually everywhere.

 

Measuring with self-made turbidimeter

Measuring with self-made turbidimeter

It is quite a joy to generate analytical data (even if not the most accurate) using an instrument that the student has built his/herself!

Photos (by Ivo leito) show students working in the improvised “instrument manufacturing lab”.

Let there be light! The LED source of the turbidimeter

Let there be light! The LED source of the turbidimeter